MATH2050a Mathematical Analysis I

September 17, 2018

Exercise 1 suggested Solution

1. Show that $\sup\{1-1/n: n \in N\} = 1$. Solution:

Archimedean property: If $x \in R$, then there exists n_x such that $x < n_x$.

Let S = {1-1/n : $n \in N$ }. Clearly, $0 < 1/n \le 1$ for all $n \in N$. Multiply the inequality by negative sign. $0 > -1/n \ge -1$ for all $n \in N$. Add 1 for each term in the above inequality.

 $1-0>1-1/n\geq 1-1,\, \forall n\in N;\, 1>1-1/n\geq 0,\, \forall n\in N;\, 0\leq 1-1/n<1,\\ \forall n\in N.$

That is, Thus, 0 is the lower bound of S and 1 is the upper bound of S.

Since, every non-empty set which has an upper bound as well as lower bound also has a supremum and an infimum in R. Therefore, the set S has a supremum.

Moreover, for any $\epsilon > 0$, by Archimedean property, there exists $n \in N$ such that $1/\epsilon < n$, which implies $1/n < \epsilon$. Further, $1 - 1/n > 1 - \epsilon$. Therefore, $1 - \epsilon$ is not an upper bound of the set for each $\epsilon > 0$.

Since, $\epsilon > 0$ is arbitrary, it follows that 1 is the supremum of the set $S = \{1 - 1/n : n \in N\}$. Hence, $\sup\{1-1/n : n \in N\} = 1$.

4. Let S be a non-empty bounded set in R.

(a) Let a > 0, and let $aS := \{as : s \in S\}$. Prove that

 $\inf(aS) = a \inf S, \sup(aS) = a \sup S$.

(b) Let b < 0, and let $bS := \{bs : s \in S\}$. Prove that

inf(bS) = b sup S, sup(bS) = b inf(S).

Solution:

Here we just prove (a), and consider the supremum of S.

Recollect definition of supremum. If S is bounded above, then a number u is said to be supremum of S if it satisfies the conditions

(1)u is an upper bound of S, and

(2) if v is any upper bound of S, then $u \leq v$.

Assume u is the supremum of S. since a > 0, $\forall x \in S$, $ax \leq au$, which satisfies condition(1).

suppose v is any upper bound of aS, since a > 0, then v/a is the upper bound of S. And since u is the supremum of S, we have $u \le v/a$, which implies $au \le v$. The conditio(2) also holds.

6. Let X be a nonempty set and let $f : X \to R$ have bounded rang in R. If $a \in R$, show that Example 2.4.1(a) implies that

 $\sup\{a + f(x) : x \in X\} = a + \sup\{f(x) : x \in X\}$

Show that we also have

 $inf\{a + f(x) : x \in X\} = a + inf\{f(x) : x \in X\}$

Solution:

Here we just prove the first equality. Let X be a nonempty set, and $f: X \to R$ be a bounded function. Let $A := \{f(x) : x \in X\}$, we see that $\{a + f(x) : x \in X\} = \{a + y : y \in A\}$. Assume u is the supremum of A, similar to exercise 4, we need to verify a + u satisfies the above two conditions.

 $\forall y \in A$, since $y \leq u$, we have $a + y \leq a + u$. So a + u is the bound of $\{a + f(x) : x \in X\}$. suppose v is any upper bound of $\{a + Y : y \in A\}$, then v - a is the upper bound of $\{y : y \in A\}$. Since u is the supremum of A, we have $u \leq v - a$, which implies $a + u \leq v$. The conditio(2) also holds.

Hence, a + u is the supremum of $\{a + f(x) : x \in X\}$, we have $sup\{a + f(x) : x \in X\} = a + sup\{f(x) : x \in X\}$.